Apparent Strain Localization and Shear Wave Dispersion in Elastic Fault Gouge with Microrotations
نویسندگان
چکیده
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
منابع مشابه
Shear strain localization in elastodynamic rupture simulations
We study strain localization as an enhanced velocity weakening mechanism on earthquake faults. Fault friction is modeled using Shear Transformation Zone (STZ) Theory, a microscopic physical model for non-affine rearrangements in granular fault gouge. STZ Theory is implemented in spring slider and dynamic rupture models of faults. We compare dynamic shear localization to deformation that is unif...
متن کاملStability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis
Field observations of major earthquake fault zones show that shear deformation is often confined to principal slipping zones that may be of order 1–100 μmwide, located within a broader gouge layer of order 10–100 mm wide. This paper examines the possibility that the extreme strain localization observed may be due to the coupling of shear heating, thermal pressurization, and diffusion. In the ab...
متن کاملWave propagation analysis of magneto-electro-thermo-elastic nanobeams using sinusoidal shear deformation beam model and nonlocal strain gradient theory
The main goal of this research is to provide a more detailed investigation of the size-dependent response of magneto-electro-thermo-elastic (METE) nanobeams subjected to propagating wave, ...
متن کاملPulse-like, crack-like, and supershear earthquake ruptures with shear strain localization
We incorporate shear strain localization into spontaneous elastodynamic rupture simulations using a Shear Transformation Zone (STZ) friction law. In the STZ model, plastic strain in the granular fault gouge occurs in local regions called STZs. The number density of STZs is governed by an effective disorder temperature, and regions with elevated effective temperature have an increased strain rat...
متن کاملParticle-size distribution and microstructures within simulated fault gouge
-This paper presents an investigation of comminution mechanisms and microstructure development within simulated fault gouge. We sheared 4.0 mm thick layers of quartz sand between rough steel surfaces using a triaxial apparatus. The layers were sheared at constant effective normal stress of 100 MPa, under saturated drained conditions, and at 45 ° to the axis of cylindrical steel samples. Porosit...
متن کامل